Forging a Cage into a Chain: Stepwise Transformation of P <sub>4</sub> by Silylenes to a Si <sub>3</sub> P <sub>4</sub> Motif
نویسندگان
چکیده
Open AccessCCS ChemistryCOMMUNICATION6 Jun 2022Forging a Cage into Chain: Stepwise Transformation of P4 by Silylenes to Si3P4 Motif Xiaofei Sun, Alexander Hinz and Peter W. Roesky Sun Institute Inorganic Chemistry, Karlsruhe Technology (KIT), 76131 Google Scholar More articles this author , *Corresponding author: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.022.202101709 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail We have discovered route access the longest low-valent molecular silaphospha-chain, seven-membered chain structure that incorporates three silicon four phosphorus atoms stepwise activation white (P4) using two different silylene precursors. The species was formed via highly reactive polyphosphide intermediate. isolation stable analogue reaction intermediate achieved with mono bis(silylenes). Due rigidity ferrocenediyl framework bis(silylene), isomerization process hampered. Theoretical studies such as natural bond orbital in molecules analyses indicated some degree delocalization double system. Download figure PowerPoint Introduction industrial production organophosphorus compounds relies on oxidation chlorine gas, yielding PCl3 or PCl5 versatile intermediates.1,2 Considering sustainability aspects, it is desirable construct phosphorus-containing an efficient controlled way directly from phosphorus. A well-established alternative utilizes transition metals coordinate functionalize P4, which commonly involves reduction moiety.3–7 In main group chemistry, synthetic monophosphines, intermediarily utilizing Bu3SnH for reported recently.8 more conventional approach employs tetrylenes initial step.9–23 were found be agents form unusual exotic silicon-functionalized polyphosphides reactions P4. common pathways activations, unit could retained broken down P1 P2 building blocks (Figure 1). Figure 1 | (a–c) Activation products mono- bis(silylenes) (Dipp = 2,6-iPr-C6H3, R (NtBu2)SiMe2, R? SiMe3).16–23 For instance, tetramesityldisilene shown activate butterfly-like Si2P2 bicyclobutane core.16 can react through insertion Si(II) center one ?-P–P bonds give strained SiP4 Si2P4 cage ( A– E, 1).17–19,22 monochloro(silylene) LPhSiCl (LPh PhC(NtBu)2) interconnected Si(I) LPhSiSiLPh forming compound F comprising four-membered planar ring.20 degradation zero-valent complex G most recently xanthene-bridged bis(silylene). From these examples, apparent typical processes are heterocycles cages, while chain-type structures rare. fact, best our knowledge, specific example disilatetraphospha-hexatriene H).21 general, constituting elements phosphazenes do not only play essential role polymer chemistry but also inorganic materials.24–26 Recently, P6 obtained reported.27 Intrigued possibility generating longer third row periodic table, we attempted assemble silaphospha-chain silylenes. Results Discussion experiment, synthesized [LSi(?2-P4)]17 A, L CH{C(Me)N(Dipp)}{C(CH2)-N(Dipp)}, Dipp 2,6-iPr-C6H3) study its amido-substituted monosilylene [LPhSi{N(SiMe3)2}],28 no transformation occurred, even when mixture heated at 80 °C 3 days. This rather surprising, [LPhSi{N(SiMe3)2}] had previously been six-membered H. To reduce steric strain enhance polarization effects, considered another where amido(pyridyl)-functionalized [LPhSi{N(2-py)Me}]29 employed [LSi(?2-P4)] (Scheme NMR-scale C6D6, sets 31P NMR patterns, assignable 2 (ca. 1:2 ratio) observed [see Supporting Information S11, minor component ? ?49.6, ?101.7, ?171.5, ?199.0; major component: 647.5, 424.7, 23.7, ?261.0] after 10 min time. solution, signals decreased rapidly within hour, quantitative formation inferred. pattern suggested both contained chemically inequivalent nuclei, large differences their chemical shifts strikingly distinct nature. set resonances span high-field region between ?50 ?200 ppm J(PP) coupling constants, expected range 1J indicating presence structural motif. contrast, appear very low fields (? 647.5 424.7 ppm), characteristic diphosphenes.9,30 Furthermore, resonance ?261.4 showed P atom isolated moiety. Scheme Formation diphosphene (see S1 proposed mechanism Table data). Several attempts identify made, difficulties arose short lifetime species. Only instances small amount benzene added [LPhSi{(NMe)(2-py)}] (1?2) did tiny orange needles occur. these, X-ray diffraction (XRD) analysis allowed identification incorporated pyridylaminosilylenes 2a), despite quality data. None recrystallize successful due isomeric 2. Nevertheless, data used starting point density functional theory (DFT) optimization. geometry remained essentially unchanged, parameters predicted model excellent agreement spectroscopically obs. ?50, ?102, ?172, ?199; calc. ?65, ?105, ?171, ?220 ppm, see S4). Molecular (a) (b) solid state. H non-coordinating solvent omitted clarity. Structural features summarized Information. crystallographic parameters, SiP3 heterocycle (Si2-P2-P3-P4) phosphasilene moiety coordinated ring. addition, pyridylaminosilylene connected P3 distance 2.198 Å (Si3–P3). All P–P Si–P distances ranged single bonds,31,32 electrons delocalized over all atoms. view supported DFT S6). Apparently, proceeded nucleophilic attack cleavage bonds, resulted opening [LSi(?2-P4)], giving unstable As established, identity still elucidated. isolate final product 2, solution [LPhSi{(NMe)(2-py)}]. turned purple few minutes. When left undisturbed 20 week, led red block-shaped crystals 32% yield. unambiguously determined XRD analysis, revealing non-symmetrically substituted (E)-diphosphene isomer [LPhSi{(NMe)(2-py)}P(LSi)] [(P)LPhSi{(NMe)(2-py)}] 2b). central motif consisted SiPSiP3Si chain; thus, so far. fragment 2.0577(4) (P2–P3) 2.1204(4) (P3–P4), respectively, whereas latter bonds.31,32 relatively bonds,21,31 supporting diphosphene. Si1–P1 length 2.1157(4) marginally than Si=P (2.06–2.09 Å).31,33,34 Si2–P2 (2.2517(4) Å) compared well classical (2.24–2.27 Å).21,35 Si2–P1 (2.1940(4) Si3–P4 (2.1628(4) fell average length, calculations (NBO) (AIM) Tables S7–S9). Within NBO formalism, ?-bond occupations significantly lower e, ?*-occupation found. Wiberg indices (WBI) along 0.96 1.24 1.30 1.57 bonds. magnitude WBI hinted strong covalent interactions; however, clear distinction significant electrostatic contribution. charges Si +1.40 1.74 adjacent bore ?0.40 ?0.87 e. These values comparable S7). Comparisons systems revealed S9) effect induced N-containing substituents Topological electron critical points ellipticity (0.09–0.32) corroborating delocalization. likely {LSi} P1–P2 bond. Related [3+1] fragmentations other functionalized derivatives,36,37 direct mesoionic carbenes P4.14 31P{1H} spectrum reveals AMRZ spin system assignment atoms). Simulations iterative fitting multiplets Figures S4 S15). Si1 Si2 ?261.0 doublet (2J(PMPZ) 23.8 Hz) satellites (J(PSi) 70 Hz, 154 Hz). Accordingly, 29Si spectrum, 6.8 ?6.9 ppm. signal detected 2.5 1J(SiP) 146 Hz assigned Si3. computed 648, 425, 24, ?261; 666, 432, 42, ?254 Since impractically featured pyridylamino-monosilylene moieties, sought prevent introducing geometric constraints employing bis(silylene) [LSi(?2-P4)]. Our choice ferrocenediyl-bridged [LPhSiFcSiLPh],38 bridging ferrocene rigid centers (4.048 Å).39 equimolar [LPhSiFcSiLPh] instantly afforded dark solution. AXYZ 6:5 ratio 3, 3a: ?60.4, ?126.3, ?159.0, ?191.8; 3b: ?57.3, ?119.4, ?173.9, ?178.3 ppm; isomers 3a 3b similar reminiscent 1. hypothesis corroborated single-crystal (SCXRD) 4). Si-polyphosphide analogous elucidated being responsible computations, calculated agree (calc. ?72, ?117, ?160, ?194; ?60, ?126, ?159, ?192 S5). Other establish nature fit ?62, ?138, ?179; ?57, ?119, ?174, ?178 ppm). cis 3a) trans 3b) respect relative orientation PZ methyl ?-diketiminate backbone slight energy difference 22 kJ/mol 2). (162.04 MHz) 3b. Experimental (top) simulated (bottom) spectrum. SiP4-cage open-caged 2.1258(8) (Si1–P1) 2.1973(8) (Si3–P3), lengths. newly ring folded about Si2?P3 axis 32.1°, “butterfly-shaped” structure. (Si2–P2 2.2813(7) shorter (Si2–P4 2.1658(7) dicoordinated atom. 3b, broad 35.5, 33.0, ?9.0, dynamic constraint made possible stabilize 3; therefore, pathway further hindered. 4 Synthesis S2 Conclusion tetraphosphasilatricyclopentane cleaved silylenes afford polyphosphides. case, amino-silylene show any reactivity, amido-pyridyl mono(silylene) [LPhSi{(NMe)(2-py)}], trisilatetraphospha-heptatriene bearing backbone, results showcase introduction sites control obtained. available includes: (1) synthesis characterization compounds, (2) spectra, (3) details simulation (4) IR (5) SXRD data, (6) quantum calculations. Conflict Interest There conflict interest. Funding work Deutsche Forschungsgemeinschaft (DFG) [project no. 470309834 (Ro2008/21-1 HI 2063/1-1)]. Acknowledgments thank Prof. D. Fenske help Nano Micro Facility (KNMF) measuring acknowledge support state Baden-Württemberg bwHPC DFG [grant INST 40/467-1 FUGG (JUSTUS cluster)]. References Corbridge E. C.Phosphorus: An Outline Its Biochemistry, Uses. Elsevier: Amsterdam, 1995. Kauffman G. B.The 13th Element: Sordid Tale Murder, Fire, Phosphorus. By John Emsley. Wiley & Sons: New York, Chichester, England, 2000.Chem. Educator2002, 7, 179–180. 3. Peruzzini M.; Gonsalvi L.; Romerosa A.Coordination Chemistry Functionalization White Phosphorus Transition Metal Complexes.Chem. Soc. Rev.2005, 34, 1038–1047. 4. Cummins C. C.Terminal, Anionic Carbide, Nitride, Phosphide Transition-Metal Complexes Synthetic Entries Low-Coordinate Derivatives.Angew. Chem. Int. Ed.2006, 45, 862–870. 5. Cossairt B. Piro N. A.; C.Early-Transition-Metal-Mediated Phosphorus.Chem. Rev.2010, 110, 4164–4177. 6. Caporali Rossin M.P4 Late-Transition 4178–4235. 7. Giusti Landaeta V. R.; Vanni Kelly J. Wolf M.Coordination Elemental Phosphorus.Coord. Rev.2021, 441, 213927. 8. Scott J.; Cammarata Schimpf R.Synthesis Monophosphines Directly Phosphorus.Nat. Chem.2021, 13, 458–464. 9. Masuda D.; Schoeller W.; Donnadieu B.; Bertrand G.Carbene Subsequent Derivatization.Angew. Ed.2007, 46, 7052–7055. 10. Back O.; Kuchenbeiser G.; G.Nonmetal-Mediated Fragmentation P4: Isolation Bis(carbene) Adducts.Angew. Ed.2009, 48, 5530–5533. 11. Martin Weinstein Moore E.; Rheingold A. G.Exploring Reactivity Electrophilic Carbenes: P8 Clusters.Chem. Commun.2013, 49, 4486–4488. 12. G.NHC-Mediated Aggregation P12 Cluster.J. Am. Soc.2007, 129, 14180–14181. 13. Borger Ehlers Slootweg C.; Lammertsma K.Functionalization Direct P?C Bond Formation.Chem. Eur. J.2017, 23, 11738–11746. 14. Rottschäfer Blomeyer S.; Neumann Stammler H.-G.; Ghadwal R. S.Direct Dicarbenes Mesoionic Facile Access 1,2,3-Triphosphol-2-ides.Chem. Sci.2019, 10, 11078–11085. 15. Inoue Sarkar Weetman Munz D.Reversible Transfer Silyl-Stannylene.Angew. Ed.2021, 60, 3519–3523. 16. Driess Fanta Powell West R.Synthesis, Characterization, Complexation Unusual P2Si2 Bicyclobutane Butterfly-Structure: 2,2,4,4-Tetramesityl-1,3-diphospha-2,4-disilabicyclo[1.1.0]butane.Angew. Ed. Engl.1989, 28, 1038–1040. 17. Xiong Y.; Yao Brym M.Consecutive Insertion Silylene Tetrahedron: Strained Compounds.Angew. 4511–4513. 18. Alvarado-Beltran I.; Baceiredo Saffon-Merceron N.; Branchadell V.; Kato T.Cyclic Amino(Ylide) Silylene: Stable Heterocyclic Strongly Electron-Donating Character.Angew. Ed.2016, 55, 16141–16144. 19. Reiter Frisch P.; Wendel Hörmann F. S.Oxidation Reactions Versatile, Two-Coordinate, Acyclic Iminosiloxysilylene.Dalton Trans.2020, 7060–7068. 20. Sen S. Khan Kratzert Meindl K.; Henn Stalke Demers J.-P.; Lange A.Zwitterionic Si-C-Si-P Si-P-Si-P Four-Membered Rings Two-Coordinate Atoms.Angew. Ed.2011, 50, 2322–2325. 21. Michel D.A Chain Silylene-Activated Phosphorus.Angew. 11786–11789. 22. Roy M. Ferguson McDonald Zhou Rivard E.A Vinyl Silylsilylene Strong Homo- Heteroatomic Bonds.Chem. 6476–6481. 23. Wang Szilvási T.; M.A Bis(silylene)-stabilized Diphosphorus Compound Monophosphorus Anion Reagent.Nat. Chem.2020, 12, 801–807. 24. Potin De Jaeger R.Polyphosphazenes: Synthesis, Structures, Properties, Applications.Eur. Polym. J.1991, 27, 341–348. 25. Allcock Chen C.Polyphosphazenes: Inorganic–Organic Polymers.J. Org. 85, 14286–14297. 26. Gleria R.Phosphazenes: Worldwide Insight; Nova Science Publishers: 2004. 27. Fang Douair Hauser Li Zhao Maron Zhu C.Uranium(III)-Phosphorus(III) Synergistic Arsenic.CCS 3268–3276. 28. Hey Herbst-Irmer D.Striking Stability Substituted Silicon(II) Bis(trimethylsilyl)amide Si–Me Cleavage without Catalyst.J. Soc.2011, 133, 12311–12316. 29. Qi X.; Zheng Dong Zuo H.; Fuhr D.Synthesis Catalytic Activity Iron Hydride Ligated Bidentate N-Heterocyclic Hydroboration Carbonyl Compounds.Organometallics2019, 38, 268–277. 30. Schrödel H.-P.; Schmidpeter A.The 31P-Chemical Shift Diphosphenes.Phosphorus Sulfur Silicon Relat. Elem.1997, 69–76. 31. Pyykkö Atsumi M.Molecular Double-Bond Covalent Radii Elements Li–E112.Chem. J.2009, 15, 12770–12779. 32. Single-Bond 1–118.Chem. 186–197. 33. Bender Niecke Nieger M.The First X-Ray Structure Phosphasilene: 1,3,4-Triphospha-2-sila-1-butene.J. Soc.1993, 115, 3314–3315. 34. Präsang Asay Irran M.An Ylide-Like Phosphasilene Striking 4?-Electron, Resonance-Stabilized 2,4-Disila-1,3-diphosphacyclobutadiene.J. 2868–2871. 35. Rademacher P.Größe und Gestalt von Molekülen. Strukturen organischer Moleküle; Wiley-VCH: Weinheim, 2005; pp 55–88. 36. Lutz K.Selective Fragmentations “P” Lewis Acid Stabilized [RP4]? Butterfly Anion.Angew. Ed.2017, 56, 285–290. 37. Bresien Schulz Villinger A.A Tricyclic Hexaphosphane.Chem. J.2015, 21, 18543–18546. 38. Enthaler M.Bis(silylenyl)- Bis(germylenyl)-Substituted Ferrocenes: Structure, Applications Silicon(II)–Cobalt Complexes.Angew. Ed.2012, 51, 6167–6171. 39. Shan M.Where Silylene–Silicon Centres Matter Small Molecules.Chem. Rev.2020, 6733–6754. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 4Issue 6Page: 1843-1849Supporting Copyright Permissions© 2022 Chinese Chemical SocietyKeywordsmain groupsilylenesynthesissiliconphosphorusP4 activationAcknowledgmentsWe Downloaded 1,006 times PDF downloadLoading ...
منابع مشابه
a study of translation of english litrary terms into persian
چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...
15 صفحه اولa genre analytic study of research papers written by bilingual writers and their beliefs: a case of persian-english writers
تحقیق حاضر گزارشی است از تحلیل بخش مقدمه دو دسته از مقالات که عبارتند از: 11 مقاله از دو نویسنده دوزبانه فارسی زبان, که شامل مقدمه 4 مقاله به زبان انگلیسی و چاپ شده در مجلات بین المللی, مقدمه 3 مقاله به زبان انگلیسی و 4 مقاله به زبان فارسی چاپ شده در مجلات داخلی می شود؛ و 12 مقاله از محققان خارجی که در مجله applied linguistics به چاپ رسیده است. مبنای تئوری این تحلیل ها نظریه سوئلز (1990) یا هما...
15 صفحه اولtranslating allusive devices:a survey of a portrait of the artist as a young man by james joyce
تلمیح یکی از عناصری است که تقریباً در همه ی متون ادبی یافت و باعث ایجاد شکاف های فرهنگی می شود. در این تحقیق به عنوان شکلی از بینامتنیت در ترجمه مورد توجه قرار می گیرد. تلاش شده است تا راهکارهای مترجمان برای ترجمه چهار نوع اسامی خاص و عبارات کلیدی تلمیحی (مذهبی، سیاسی، تاریخی و اسطوره ای) موجود در رمانِ چهره مرد هنرمند در جوانی به فارسی بررسی شود. این تحقیق مقایسه ای بر اساس راهکارهای ترجمه تلمیح...
15 صفحه اولدرباره تعداد جواب های معادله x^p^k=a در یک p-گروه متناهی
تعیین تعداد جواب های معادله ای به شکل x^p^k=a که در آن a عضوی از گروه مفروض است در مشخص کردن ساختار آن گروه تعیین کننده است.در سال 1931 کولاکف ثابت کرد که در یک p-گروه غیر دوری (p فرد) تعداد جواب های x^p^k=1 مضربی از{ p^{k+1 است به شرط آنکه نمای گروه مضربی از p^k باشد. هرگاه a عضو دلخواهی از گروه باشد در اینصورت تعداد جواب های x^p^k=a برای p-گروه غیردوری که 2-گروه رده ماکسیمال نیست و نمای آن حد...
15 صفحه اولa comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CCS Chemistry
سال: 2022
ISSN: ['2096-5745']
DOI: https://doi.org/10.31635/ccschem.022.202101709